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436 F.VERHULST

A study of two-degrees-of-freedom systems with a potential which is discrete-symmetric
(even in one of the position variables) is carried out for the resonance cases 1:2, 1:1,
2:1 and 1:3. To produce both qualitative and quantitative results, we obtain in each
resonance case normal forms by higher order averaging procedures. This method is
related to Birkhoff normalization and provides us with rigorous asymptotic estimates
for the approximate solutions. The normal forms have been used to obtain a classifica-
tion of possible local and global bifurcations for these dynamical systems. One of the
applications here is to describe the two-parameter family of bifurcations obtained by
detuning a one-parameter family studied by Braun. In all the resonances discussed an
approximate integral of the motion other than the total energy exists, but in the 2:1
and 1:3 resonance cases this degenerates into the partial energy of the z motion. In
conclusion some remarks are made on the relation between two-degrees-of-freedom
systems and solutions of the collisionless Boltzmann equation. Moreover we are able to
make some observations on the Hénon—Heiles problem and certain classical examples
of potentials.

1. INTRODUCGTION

Both in (astro-)physics and in mathematics many studies have been devoted to Hamiltonian
systems with two degrees of freedom. Mainly through the work of Birkhoff (192%) it has been
realized that a certain resonance parameter, in this paper called w (§4), plays a crucial part in
determining the topology of the phase-space as induced by the Hamiltonian. Here we shall
consider Hamiltonian systems at the so-called main resonances with a potential, which is
discrete-symmetric in one of the variables. Many numerical studies were produced for such
systems, for instance by Hénon & Heiles (1964) and by Contopoulos (1967). On the other hand
a number of general results are known, obtained by rather abstract methods in bifurcation
theory, for instance by Arnold (1963) and by Kummer (1976).

The aim of this paper is to fill in the gap between abstract and concrete results by using rigorous
methods from the theory of asymptotic expansions, based on obtaining Birkhoff normal forms by
averaging procedures. The advantage of this method is that it gives general insight into the quan-
titative behaviour of the phase-flow, which can hardly be achieved by numerical integrations of
systems with particular potentials. Moreover, it provides us at the same time with qualitative
results concerning the existence and stability of the bifurcations which have been found. In each
case the precision of the quantitative results can be improved by calculating higher-order
asymptotic approximations; for the language of asymptotics employed in this paper, we refer to
Verhulst (1975).

Another important aspect is the relation of the results obtained here for dynamical systems
with two degrees of freedom (corresponding with a phase-space of dimension four) with con-
tinuous systems described by partial differential equations. In the case of galaxies whose dynami-
cal behaviour is governed by the collective gravitational field, this relation can be indicated as
follows.

If H is the Hamiltonian determining the motion of each individual particle, ¢, (i = 1,2, 3) are
three spatial coordinates and p; are the corresponding three momenta, the distribution function

S (&, ps, g;) is determined by the Liouville equation

of Y Y, ”

For self-gravitating systems this equation is supplemented by the Poisson equation
AU, = p (2)
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RESONANCES IN AXI-SYMMETRIC GALAXIES 437

in which U] is the collective gravitational potential and p is the particle density. Equation (1) is
sometimes referred to as the collisionless Boltzmann equation, the system of equations (1), (2) is
sometimes called the system of Vlasov equations. The relation with studies of a finite dimensional
phase-space was pointed out by Jeans (1916), who observed that the distribution function fis a
function of the independent integrals of the Lagrangian subsidiary equations (cf. equation (3) in
§2). Jeans’s paper was the beginning of a large number of studies involving the so-called ‘third
integral of the galaxy’; for a survey and further references see Ollongren (1962). The mathe-
matical formulation of our problem is given in §2. In §§ 3 and 5 we formulate the problem in the
framework of asymptotics and we summarize the theorems which we need. The resonance
parameter w, which is discussed in §4, will be considered in the neighbourhood of the main
resonances 3, 1, 2 and 3; other values of w will be considered in a subsequent paper. It turns out
that near the resonances § and 1 a ‘third integral of the galaxy”’ exists in a certain asymptotic
sense (§§6.2 and 8.2), producing a periodic exchange of energy between the two degrees of
freedom.

The situation is different at resonances 2 and 3 owing to certain degenerations of the normal
forms (§11). The concept of stability is used with two different meanings. First we consider the
orbital stability of individual orbits in a given potential field (§§7.2 and 9.3); secondly we con-
sider the structural stability of our results with respect to perturbations in a set of permissible
potentials (§12). Finally in § 13 we give a number of preliminary applications and conclusions.

2. Tug HAMILTONIAN AND THE EQUATIONS OF MOTION

The equations of motion for a star of unit mass are the Lagrangian equations describing the
characteristics of the collision-free Boltzmann equation. In cylindrical coordinates 7, 0, z they
read

AU, )

P 2 YY1

7 = rf P

ré:—2r’9—§-%—l, (3)
U,

2=z

The potential U, is supposed to be axi-symmetric, i.e. 0U,/06 = 0, and analytic with respect to r
and zin the domains considered. The requirement of analyticity is for the sake of convenience and
can be relaxed if necessary. The assumption of axi-symmetry reduces our problem to the case of a
dynamical system with two degrees of freedom as we can integrate the second equation to give

720 = J

in which Jis a constant of motion, the angular momentum integral. Following Ollongren (1962)
we introduce the reduced potential Uy(r, z) by

U2 = Ui_+"%‘J2/rz.
The remaining two equations of motion become

= —0U,y/0r; 2= —0U,/0z. (4)
43-2
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438 F.VERHULST

Apart from axi-symmetry we make a second assumption: the potential U, (or U};) is supposed to
be discrete-symmetric in z. This implies Uy(r, z) = Uy(r, —z). In an axi-symmetric system, which
is discrete-symmetric in z, circular orbits are found as the stationary solutions of equation (4)
which correspond with critical points z = 0 and r = 7, given by

2 =5 r0.0).
We translate x = r —r, to obtain the equations of motion in the final form
§=—0U,/0x, Z=—0U,/0z, (5)
in which consequently U, is supposed to be analytic with respect to x and z and discrete-symmetric
in z; we put Uy = Uy(x, 22) = Up(x +7,,2).

x = 0, z = 0 is a (non-degenerate) critical point of Us; at the same time x =z=4=Z=0isa
non-degenerate critical point of the Hamiltonian function

h = §(%242%) + Us(x, 2%). (6)
The Hamiltonian /4 is the energy integral of system (5) and so, together with the angular momen-
tum integral J, we have two integrals of motion of system (3). These two integrals may be used to
solve the collisionless Boltzmann equation (1) as each differentiable function of 4 and J satisfies
this equation with the given restrictions on the potential. However, (5) constitutes a system of
equations of the 4th order and other integrals of the system may exist besides the energy integral.
Moreover, distribution functions based on only energy and angular momentum produce results
which are at variance with observations (for a discussion of these observational results see Ollon-
gren 1962).

We should remark here that the problem of the existence of an integral of motion, independent
of energy and angular momentum (a second integral in a two-degrees of freedom system) also
plays a natural part in the ergodic theory of dynamical systems in classical mechanics. All these
considerations triggered off a large number of studies, both analytic and numerical, on systems
with two degrees of freedom. The analytical results on the third integral in the literature thus far
concern formal expansions, i.e. expansions which were given without any proof of convergence or
asymptotic validity. Extensive numerical results were produced by Ollongren (1962) and by
Martinet & Mayer (1973, 1975); particular interesting cases were studied numerically by Hénon
& Heiles (1964) and Contopoulos ¢t al. (see for instance Contopoulos 1967).

3. LOCAL ANALYSIS

An important part of our considerations is connected with the Taylor expansion of Us(x, z2)
with respect to its arguments:

b
Us(x, 2%) = §(x? + w?2?) — (%x3+a2 xz2) - (% xt +—2?x2z2+%3z4) +... (7)

The corresponding equations of motion (5) become
F4x = (a; 5%+ ay,2%) + (by 43+ by x2%) + ...,
2+ 02z = 2a,52+ (box?z + by2%) +....

The coefficients in the expansion of the potential are all real constants; we require that w > 4.
The choice of the coefficient 4 for x2 does not signify any restriction of generality as this can be
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achieved by appropriate re-scaling of U,. In the Hénon-Heiles problem (Hénon & Heiles
1964) we have w = 1, 4; = 1, @, = — 1, while all higher order coefficients vanish.

To choose the coefficient of z2 to be > } is of course a restriction, with the consequence that the
origin of phase-space ¥ = & = z = Z = 0 is a Lyapunov-stable solution of the equations of motion
(actually, positivity of the coeflicient would suffice for that). This restriction on the coefficient of
z%is, as the assumption of discrete symmetry in z, motivated by its relevance for the study of orbits
in rotating galaxies (for examples of model potentials, see the applications in §13). The Lya-
punov stability of the origin of phase-space implies for such a galaxy the Lyapunov stability of the
circular orbits around the centre of the galaxy in the plane of symmetry. At the same time it
provides the justification of the following local analysis: we re-scale x = ¢¥ and z = €z, where € is
a small positive parameter. The equations of motion become (we drop the bars after transfor-
mation)

E+x = e(ayx%+ay2%) +€2(by 4% + by x2?) +0(e3),} (8)

Z4 0?2z = €2a,xz + €*(by ¥z + by 2%) + O(€?).

We wish to study the phase flow induced by the Hamiltonian (6) into R* and the behaviour of the
orbits in the extended phase-space (behaviour with time). This is achieved by obtaining local
results from a study of equations (8).

4, THE RESONANCE PARAMETER

We may visualize system (8) as a perturbed linear system with, putting ¢ = 0, frequencies 1 and
w. Whether the ratio of these basic frequencies is rational or irrational plays an important part in
the theory of normal forms for Hamiltonian systems and its consequences are developed by
Birkhofl, Siegel, Moser and others (for a summary see Moser 1973). In a continuous system as a
galaxy we have to consider a continuous set of frequency ratios (here > %) and one might think
of discarding the rationals as they form a set of measure zero in the permitted range. For
the irrational frequency ratios one can find formal canonical transformations which solve
system (8) (Birkhofl 1927). However, in this approach one is faced with the problem of the diver-
gence of the series introduced in the canonical transformations which is connected with the prob-
lem of small denominators (Siegel 1954). Thisis why in our approach the starting point will be the
resonant structure of system (8) which is obtained by starting with the rationals and then admit-
ting the irrationals by small perturbations of the rationals. We put

o? = w14 5(6)], (9)

where n > }, n€Q; 8(€) is a continuous function of the small parameter €, 8(¢) = o(1). This
approach still does not look very systematic as the rationals z form a dense subset of the set w > 4.
However, the theory of Birkhoff normal forms provides us with a natural hierarchy of the rat-
i 2§ .
ionals for z > 3 first order resonance if =2 or n =%,
second order resonanceif =1 or zn=3,
higher order resonances if =z # 2,4, 1, 3;

(if we consider the set » > 0, we have to include z = } as a second order resonance). At the same
time the choice of z limits the choice of the order function 8(¢). This has been made clear by the
work of Van der Burgh (1974).
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440 F.VERHULST

In this paper we treat the main resonances (first and second order) and we shall show that we
have to change the natural hierarchy owing to the occurrence of certain degenerations in the
normal forms.

5. AVERAGING AND THE MODIFIED BIRKHOFF TRANSFORMATION

To obtain a system of differential equations in the standard form for averaging we transform
in the usual way (generalized Van der Pol substitution) to amplitude-phase variables:

x=Acos(t+¢), z= Bcos(nt+y),
%= —Asin(t+¢), z= —nBsin(nt+).
Transformation of equation (8) produces with equation (9) the variational equations

%‘% — _esin (t+ §) [a, 42 cos? (1 + B) +ay B cos? (ni+ )]

—€2sin (¢4 @) [by A3 cos® (¢ + @) + by AB2cos (¢ + @) cos? (nt+9)] + O(e?), (10a)

%%S = _699_5_(2—1-_@ [a, 42 cos? (£ + @) +ay B2 cos? (nt+1)]

—€2cos (¢4 @) [by A% cos® (¢ + @) + by B2 cos (¢4 @) cos? (nt + )] + O(e3), (100)

ﬂdl; = 3(c) Bsin (2ni+2¢) - 2 ay AB cos (1-+ ) sin (21 + 2)

—%sin (nt+ ) [by A2B cos? (t+ @) cos (nt + ) + by B3 cos® (nt + )] + O(e?), (10¢)

%’é = &(€) ncos? (nt+1) —e ;%azAcos (t+ @) cos? (nt + )

[y 42 o8 1+ ) cos® (mb+ 1) + by B cost (nt+ )] + O (€3, (10d)

to which appropriate initial values have to be added. If one wishes to consider values of the
amplitude 4 which are of the order of the small parameter ¢ a somewhat different set of variables
is used to avoid the small denominator in equation (100) (cf. §7).

Averaging of the 0(d(¢)) and the O(e) terms in the right-hand sides of equations (10) while
keeping 4, B, ¢ and ¢ fixed produces, if n # },

dd _d¢ _dB _  df _

n
Tow s w = =20

The tilde is introduced to indicate that we have omitted the O(e?) terms. This result is unexpected
only for n = 2 as in that case the result means that we have no first-order resonance atn = 2. If we
choose 8(¢) = O(e?) and n # %, the result means quantitatively that by using the Krylov, Bogo-
liubov and Mitropolsky averaging theorem (Bogoliubov & Mitropolsky 1961) the amplitudes
and phases are approximated by their initial values within an error of O(e) on the time scale 1/e.
The dynamical system behaves if n # } like a linear system on the time scale 1/¢. Clearly, if
n # 1, significant changes in the dynamical system take place on a longer time scale. If n = § we
have a first-order resonance; this case is discussed in §§6 and 7.
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Itisclear thatin a large number of cases, we have to study the behaviour of the phase-flow on a
longer time scale than 1/e. This is the motivation for introducing a modified Birkhoff transfor-
mation according to Van der Burgh (1974). In the case of conservative dynamical systems as
considered here, the modified transformation of obtaining normal forms through averaging
produces the same results as the classical Birkhoff transformation.

Consider the initial value problem in R®

& hln )+ l), 2(0) = %
1'
with f(x, t) T-periodic in ¢ and f Si(x, ) de = 0. (11)
0
Introduce the modified Birkhoff transformation

t
20) = y(0) +e | Fl0(0),5) s (12)
and one obtains the equation

d
o =y, +0(c", y(0) = x,

One can show that the averaging theorem applies to thisequationand that for the first asymptotic
approximation §(¢) of y(¢) the following estimate holds
x(t) ~§(¢) = O(e) on the time scale 1/¢2.

We found that condition (11) is satisfied for equation (10) if n # }. We shall introduce in these
cases transformation (12) and by averaging obtain asymptotic approximations of the amplitudes
and phases on the time scale 1/€2. Second-order resonances may occur for n = 1,2, 3,

6. THE FIRST-ORDER RESONANCE CASE 7 = }
6.1. First-order averaging

To conform with the formulation in most of the literature we rescale the time ¢ = {/w; the
equations of motion (8) become (after dropping the bar)

F4+w72x = e(a, x% +a,2%) +€2(by X3 + by x2%) + O(€3),
Z+42z == €2ayxz+ €%(by ¥z + by 2%) + O(€3)

(all the coefficients a,, a,, etc., have to be multiplied by w=2 but we absorb this constant in the
coeflicients). Studying the resonance case z = } and allowing for small detuning of the resonance

frequency we may put 0t = 4[148(e)], 3(e) = O(e).
Transformation to amplitude-phase variables
x = Acos(2t+¢), z = Bcos(t+¢),
%= —24sin (2t4+¢), Z= —Bsin(t+y),
produces the variational equations
A = 8(e) Asin (4t +2¢) — %esin (2t + P) [a, A2 cos2(2t + @) +ay B2 cos? (14 )]
—4e?sin (2¢+ @) [b, A% cos® (2t + @) + by AB2 cos (2t + P) cos? (t+ )] + O(e®), (13a)
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442 F.VERHULST

é = 8(¢) +8(¢) cos (4t +2¢) —-—z%cos (2t +¢) [a, A2 cos? (2t + p) +a, B2 cos? (t+ )]
— 3€2cos (2t + @) [b, A% cos® (2t + @) + by B2 cos (2t + ¢) cos? (t+ )] + O(e?), (13d)
B = —€2a, ABsin (t+) cos (£ 4 1) cos (2t + B)

—e2sin (84 9) [0y A2B cos? (2t + ¢) cos (t+ ) + bycosd (¢ )] + O(e3), (13¢)
V= —e2ay A cos (2t + $) cos? (¢t + ) —e2cos (¢+1r)
X [by A% cos? (2t + @) cos (t+ 1) + bg B2cos? (1 + )] + O(c3). (13d)

Averaging of equations (13a—d) and dropping the terms of O(e?) produces for the first asymptotic
approximations 4, @, B, i of the amplitudes and phases

dZ_ ay 55, dB_ 2

-a—."r--—-—'gg SlnX, E——JBS X, (14)
dg 08(e) a8 o dF _ ay )
ar= ¢ 3705 gr=—gdesd

Here, we introduced the time-like variable 7 = ef and the auxiliary angular variable X by

X =¢—2).

The initial conditions are the same as those imposed on 4, ¢, B and . For the solutions of
equation (14) we have the estimates

A(t) — A(et) = O(e)

on the time-scale 1/e, etc. The equations for ¢ and 1 can be used to obtain an equation for the
approximate phase difference X

dX  8(e B >
- %+a2 (J——qu) cos X. (14q)

If a, = 0 equations (14) degenerate and we treat this case separately.

6.2. Integrals of motion

As expected, the equations for 4 and B can be integrated to produce the approximate energy
integral 4d2(r) + B2(r) = 2E,, (15)
where E, is a constant determined by the initial conditions. It is clear that

4A42(t) + B%*(t) —2E, = O(¢) on the time scale 1/e.

Of course we have a much stronger result; the boundedness of the solutions on the energy mani-
fold (e is small) enables us to conclude that this estimate holds uniformly for ¢ > 0.

A second approximate integral of motion can be obtained by eliminating B from the equations
for 4 and X with the aid of equation (15) and integrating the resulting equations. One finds the
integral of equation (14)

0y A(By—22%) cos £—22E 10 _ (164)
or with equation (15) 1a, AB?cos X — 2-8—2212 = I, (160)
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The constant I, is determined by the initial conditions. Transforming to cartesian coordinates
and after some rearrangements we find that the integral (164) becomes (we omit the tildes)

La,(x22 — x2% + 2242) — 2 e )(x2+ $i2) = (16¢)

The estimate of asymptotic validity is
d(e
as A(1) B(t) cos X(t) - 22 a2y 1, = 0(¢
on the time scale 1/e.
The results obtained in this section for this first-order resonance case are contained in the
literature. For an indication of the literature on quantitative results see Van der Burgh (1974); a

discussion of the topology of phase-space for Hamiltonian systems at the 2: 1 resonance is given by
Cushman (1975).

7. EXISTENGCE AND STABILITY OF BIFURCATIONS IN THE CASE 7 = -]2*

In the limiting case ¢ = 0 the equations of motion (8) are linear (the potential and the
Hamiltonian are quadratic) and in the case n = } all solutions are periodic. We are interested in the
number of periodic solutions which branch off in the nonlinear problem under the perturbations
of the quadratic potential. We look for these periodic solutions for fixed but arbitrary values of the
energy (arbitrary within the scope of asymptotic analysis in the neighbourhood of the origin of
phase-space). For each value of the energy we expect to find a finite number of periodic solutions,
at least two according to a theorem by Weinstein (1973). The periodic solutions thus found will
be called local bifurcations with respect to the energy. Usually one looks for near-normal mode
solutions by considering small or zero values of amplitude 4 and B respectively. If however,
a, # 0, equation (135) contains a small denominator in the case 4 — 0. To study the possibility
of a near-normal mode solution we regularize the variational equations in the following way.
Instead of phase-amplitude variables introduce

x = p, cos 2t + g, sin 2¢, Z = p,cost+ gysint,
& = —2p,sin 26+ 2¢,cos 2, Z = —p,sint+g,cost.

Again we construct the variational equations, now for the variables p,(%), ..., ¢5(t), by using the
method of variation of parameters. We obtain equations analogous to equations (13a—d), however,
without small denominators. Averaging and omitting terms of O(e?) yields (7 = et)

dp, ¢

W 09, gy, (170)
dg )

Wi 265 B (-, (170)
dp - ~

sz & 2 ($1G2— G182)s (17¢)
d

—&%J—;( +u). (174)

Putting the amplitude 4 = 0 (normal mode in the z direction) implies f, = §; = 0. Inspection
of equations (17a, b) reveals that this does not produce a solution if @, # 0, except in the trivial

44 Vol. 2go. A.
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444 F. VERHULST

case of zero energy. The periodic solution corresponding with a normal mode in the x-direction
(B = 0orf, = g, = 0) satisfies both equations (14) and (17). This solution can also be found as an
exact solution (see §9.2).

We list the periodic solutions found for each value of the energy in the case a, # 0.

7.1, Existence of local bifurcations with respect to the energy

Type I: One normal mode solution in the x direction (B = 0); the solution exists for all values
of 8(¢) and a,, provided that the energy manifold remains compact.
The approximate solution is given by

A(et) = (Ey/2)
Bet) = $(0) +5(e) )
The corresponding approximate solution for x(¢) reads
%(et) = (E,/2)% cos[¢(0) +2¢+ d(e) £],

where %(et) —x(t) = O(€) on the time scale 1/e.
Type II: one periodic solution if X = 0. The amplitudes and phases can be derived from
equations (14) and (15). We introduce the parameter

(18)

8
ay eEO%
and find A(et) = 3E[—d+ (d2+3)}) } 19
B(et) = 3E}[3— 242+ 2d(d? + })#]h. (19)

Expressions for ¢(ef) and /(ef) can be obtained by substitution of the expressions for 4 and B
into equation (14) and integrating. The condition of existence of the type II periodic solution is
obtained from the energy integral (15). Clearly we have 0 < A% < }E,; together with equation
(19) this gives the condition of existence for the type II bifurgation

d > —}J2. (20)

At the value d = —$,/2 the type II periodic solution branches off the type I (normal mode)
solution.
Type III: one periodic solution if X = n. The amplitudes and phases can be derived from

equations (14) and (15). We find
A(et) = FEFT+ (@ + ), o1
B(et) = §E§[3—2d2—2d(a’2+%)%]%.} (21)

Again expressions for ¢(et) and 7 (ef) can be obtained easily. Both for the type IT and the type ITI
bifurcation the resulting #(et) and 2(ef) constitute approximate solutions with error O(¢) on the
time scale 1/e. The condition of existence for the type ITI bifurcation is obtained from the energy
integral and becomes d < 3y2. (22)

Atthevalue d = /2 the type ITI periodic solution branches off the type I (normal mode) solution.

Remarks

(1) The parameter d depends on the energy FE, and this is connected with the fact that the
effectivity of the detuning 6(¢) depends on the energy. If, for example, we fix §(¢)/(a€) = 1, for
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RESONANCES IN AXI-SYMMETRIC GALAXIES 445

small values of the energy the detuning suppresses the type III bifurcation; type I and type II
bifurcations exist. If the energy is increased the phase flow remains qualitatively unchanged
until at £, = 2 the existence of the type III bifurcation is prompted. For E, > 2 all three bifurca-
tions exist. It should be remarked here that these inferences lose their validity beyond values of
E, which cause the energy manifold to be non-compact.

(2) In numerical computations one studies periodic solutions and the phase-flow by a surface
of section. For instance, for fixed values of the energy and z = 0,2 > 0, one pictures the behaviour
in the x, % plane (see, for example, Hénon & Heiles 1964). It is clear that the set of fixed points in
general does not present a complete picture of the periodic solutions. For instance in the case of
the bifurcations treated here, the boundary in a x, & plane (z = 0) represents another periodic
solution; the boundary in a z, Z plane (x = 0) represents no periodic solution.

tzpe II1 O , o
X=mn :
11 ! o N
X=0
I o X o
F=0 —342 142 d

Ficure 1. The existence of bifurcations (periodic solutions) for each value of the (small) energy in a neighbourhood
of the main resonance n = } is determined by the parameter d = §(¢) /(a,€E}). A full horizontal line denotes
existence of the bifurcations, a full vertical line denotes where the type II or type III bifurcations branch off
the normal mode (type I). Stability is indicated by O, instability by x . The figure is based on the analysis
in §§7.1, 7.2.

7.2. Stability

The orbital stability of the periodic solutions which have been found, is studied with the aid of
the integral (164). In the case of the type IT and type III local bifurcations the periodic solutions
correspond with critical points of the vector field describing the flow in the 4, X phase plane. The
integral (164) is a Morse function on open sets in the 4, X phase plane and the stability is estab-
lished by considering the index of the critical points. This is performed by expanding the integral
in the neighbourhood of the critical points while only keeping the quadratic terms. A definite
quadratic form corresponds with index zero and implies stability, an indefinite quadratic form
implies instability. This procedure is equivalent to the use of the integral as a Lyapunov function.
The Lyapunov stability in R? (4, X plane) is weakened to orbital stability when applied to the
periodic solutions in the original phase-space in R%. The type I (normal mode) bifurcation corres-
ponds with the boundary 4 = (£,/2)} of the 4, X plane and has to be studied in another way.

Type II periodic solution, X == 0, 4 and B given by equation (19): expansion of the integral
(164a) yields as a condition for stability

3A+Etd> 0
in which 4 is given by equation (19). This result means that the type 11 periodic solution is stable
ford > —%2.

Type III periodic solution, X = n, 4 and B given by equation (21): expansion of the integral
(164) yields as a condition for stability

8A—FE}d >0
in which 4 is given by equation (21). This condition means that the type III periodic solution is
stable for d < }./2.
44-2


http://rsta.royalsocietypublishing.org/

\
A

A

Py
A

y

/
Y
L

4

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A
N
A A

Py

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

446 F.VERHULST
Type I normal mode solution: equation (14a) can, with the aid of the energy integral (equation
(15)), be written as dX &) P
e +a M COS

We consider the cylindrical phase-space obtained from the 4, X plane by identifying X = 0 and
X = 2n. A D, neighbourhood of the normal mode 4 = (}E,)? is given by }E,—7 < A2 < }E,
with # a small positive parameter. We consider two cases:

. . )
If 0<a< i3\—5:—6—)+czz-(;—’q————E"cosX <b < oo,

44

where a and b are positive constants in D, for 7 sufficiently small, | £(r)| is a monotonically in-
creasing function of 7 without upper bound. It then follows from the integral (164) and the
implicit function theorem that 4 is a 2n-periodic function of X in the neighbourhood of 4 = (3E,)3.
This implies orbital stability of the normal mode. If

§%—)+ 64 2 Ocos X

has a zero in D), for each small positive 7, we infer instability of the normal mode (we still have to
check whether we have a turning point or not by calculating the second derivative).

—=> ‘El“

2n ™ --—5? 2w
(@) (6)
1
442 I
\\”_
0 - =
I —_—X A
()

Ficure 2, The 4, X phase plane near the main resonance n = } derived from equation (164) in three charac-

teristic cases; energy E, = 7. A dot denotes a critical point in the phase plane, corresponding with a periodic
solution. The existence and stablhty of the periodic solutions (bifurcations) is discussed in §7.
Casea.d = —1, 8(€) = ¢, a, = —4; there are two stable periodic solutions, i.e. the normal mode 4 = 1/4./2

and the solution at X = .

Case b. d = %, 8(¢) = %¢, a; = 6; there are two stable periodic solutions (at X = 0, 1) and one unstable normal
mode solution 4 = 1/4 /2.

Casec. d = +1, 8(€) = €, ay = 4; there are two stable periodic solutions, i.e. the normal mode 4 = 1/4,/2
and the solution at X = 0.
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Putting A2 = E,/2 — A2 with 0 < A% < 5 we obtain the equation

%_{rf_ () +aq (3Ey)tcos X+ 0(4).

So we find instability of the normal mode if |d| < }4/2, stability if |d| > $./2.
The existence and stability characteristics of the bifurcations are summarized in figure 1. The
phase flow in the 4, X plane is depicted for the three characteristic cases d < — $4/2,

ldl < $y2, d> 342
in figure 2.

7.3 The case a, = 0

In this case the right-hand sides of equations (14) become zero and the amplitudes and phases
can be approximated by their initial values on the time scale 1/e. Clearly, significant changes in
the dynamical system take place on a longer time scale. Condition (11) is satisfied and we intro-
duce the modified Birkhoff transformation (12). Averaging of the resulting equations produces for
the approximate amplitudes and phases

aa dB
U o@), - o), W
98 et ytn) A2 et by B4 8(6) + 0, (23

%—f = —1e2b, A2 —e23by B2+ 0(e3).

Because of the increased order of approximation it is useful to admit only smaller orders of
detuning: &(¢) = O(e?). It follows from equations (23) and §5 that, if @, = 0, 4(¢) — 4(0) = O(e),
B(t) — B(0) = O(e) on the time scale 1/¢%. The variation with time of ¢(e%) and /(¢%) can be
obtained by replacing 4 and B in equations (23) by 4(0) and B(0) and integrating. The resulting
#% (%) and Z(e2t) are approximations with error O(¢) on the time scale 1/¢2. Some other conclusions
are evident if g, = 0:

(1) Instead of the total energy of the system and the approx1mate integral I; we have two
independent approximate integrals corresponding with the respective energies in each of the two
degrees of freedom. This degeneration causes a drastic change of the topology of phase space.

(2) The two normal modes 4 = 0 (z,2 degree of freedom) and B = 0 (x, & degree of freedom)
do both exist. It is easy to verify that no small denominator problems exist in this case.

(3) The description of the phase-flow is not complete and needs approximations on a longer
time scale than 1/¢2. This subject falls within the scope of higher-order resonances and will be
treated in a subsequent paper.

The consequences of the results of §§6 and 7 in the perspective of structural stability will be
summarized in §12.

8. THE RESONANCE CASE 1 = 1

We introduce the time-like variable 7 = €% and the auxiliary angular variable X by

X =2(p-9).
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448 F.VERHULST

8.1. The amplitude—phase equations after transformation
The introduction of the modified Birkhoff transformation (12) into equations (10) and aver-
aging produces after lengthy calculations equations for the first asymptotic approximations of the
amplitudes and phases:

%‘g = ({40,8,— 1by) AB2sin X, (24a)
dé 5 a2+ 3p.) A2 1 15.) B2 ¢

g =~ et 36,) 4% — (Ya, 0y + 3§ + 10;) B2+ (fya1 05— §af — §by) BPcos X, (240)
c(li_f = — ({44, 8, — §ad — }b,) A2Bsin X, (24¢)
d - ~ 1€

L PR RS Cue v RETRY L

+ ('ﬁalaz-‘%ag—%bz) 14'2 COSX. (24:d)

We choose 8(¢) = O(€?) asindicated in § 5. The initial conditions are the same as those imposed on
A, ¢, B and ¥. For the approximate quantities we have estimates of the form

A(f) — A(e%) = O(e)

on the time scale 1/e2, etc. The right-hand sides of equations (24) agree with results obtained

earlier for the Hénon-Heiles problem (Verhulst 1977). These results in their turn were checked

independently by applying the classical Birkhoff transformation to the vector field instead of the

modified transformation (12).
The equations for ¢ and ¥ can be used to obtain the equation for the phase difference X
X -
O (et oo+ fad— 10, + 1) 22

— (0yay— a3+ b= 105) B~ 2 4 (oo a— 10) (B AY cos £ (20)

8.2. Integrals of motion

Not unexpectedly the equations for 4 and B produce, after integration, the approximate
energy integral. Multiplication of equation (24a) by 4 and equation (24¢) by B, addition of the
equations and integration yields _

A2(7) + B¥(1) = 2K, (26)
where E, is a constant determined by the initial conditions. It is easy to show that
A2(f) + B2(t) — 2E, = O(e) on the time scale 1/¢?
As in §6.2 we have a much stronger result; the boundedness of the solutions on the energy mani-
fold (e is small) enables us to conclude that this estimate holds uniformly for ¢ > 0.

A second integral of system (24) can be obtained as follows. We use the energy integral (26) to

eliminate B from equations (244) and (25) to obtain

(2{;1 (f5ay @y — 303 — §by) A(2E,— A?) sin X, (24aa)
dX d(e
W (=t b 1) 28,1

+(— 36} +2a, a5+ $a§ — 30, + by — 35s,) A2+ (Ya,a,— a3 —1b,) 2(E,— 42 cosX. (25aq)
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The equations for 4 and X admit an integral of motion independent of the energy if

by # %a,a,— 44 27
If condition (27) is satisfied we have

A7) [(42(7) — 2E,) cos X(7) +ad2(1) + f] = I, (28a)
_ 84} —2a,a,— a3+ 30, —by+ % ba
B 36, a,— 203~ b,

g = (a18,—$a3 +$b,— ibs) 2E, + 3(6)/62
3410, — a3 — }b,

in which

Another form of the integral (284) will prove to be useful. With the energy integral (26) we may

write the second integral as

A(r) [B(r) (—a—cos X(r)) +7] = L (280)
_ 0(e)/e* + (§al— §ad + §b, — §0q) £,

in which
2
$a,a,—a3—1b,

The constant I, is determined by the initial conditions.

In the sequel the integral (28) will play an important part; at this stage we make the following
remarks.

(1) It follows from the theory of asymptotic approximations referred to in §5 that we have the
following estimate

A2(8) [B(t) (—a—cos X(t) +v)] —I3 = O(e) on the time scale 1/e2.

A similar estimate can be deduced for expression (284). It would be useful if the asymptotic
validity of the integral could be extended over the whole time axis. It is not clear how to perform
this by the methods of asymptotic analysis alone (for a discussion of extension methods in asymp-
totic analysis see Verhulst 1976). Even in the case of the approximate energy integral (26),
where the extension of the time scale is nearly trivial, we had to use a geometric argument to
prove the uniform validity. Unfortunately Arnold’s (1963) theorem on the uniform validity of
first integrals in Hamiltonian systems does not apply to this case.

(2) Therelation between the second approximate integral of motion and the angular momen-
tum of the nearly periodic motion around the origin of phase-space is clear only in a special case.
If « = —1, y = 0, which happens for instance in the Hénon-Heiles problem, the integral
(28b) becomes in cartesian variables after some minor rearrangements

Iy = 2(x2— zx)2.
(3) The integral (28) does not exist if condition (27) is not satisfied, i.e. if
b2 = %ala2 - 4a§-

The equations (24) for the approximate amplitudes and phases become in this case

9 _ (gt +40) Bo— §(aras—a) B,

El—% = —3(a, ay—ad) A — ($503 + 3b,) B2 +3 1 8(6),
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450 F. VERHULST

If the parameters are chosen such that the right-hand sides of the equations for ¢ and i vanish,
we may expect resonance on the time-scale 1/¢3. To study this type of resonance one must include
the third-order terms in € in the equations of motion (the fifth-order terms in the potential Uy). If
these right-hand sides do not vanish, one has no main resonance for z = 1 and the problem should
be treated as a higher-order resonance. Such resonances will be considered in a subsequent

paper.

9. BIFURCATIONS IN THE RESONANCE CASE 1 = 1

In this section we shall look for the periodic solutions which branch off in the case of pertur-
bations of the two-dimensional harmonic oscillator given by equation (8). Again, we shall
characterize these bifurcations for fixed but arbitrary values of the energy (arbitrary within the
scope of asymptotic analysis in the neighbourhood of the origin of phase-space). In equations
(24) six parameters occur, so we expect five-parameter families of bifurcations. To study these
we shall give the general existence and stability criteria (the concept of stability is used here in the
sense of orbital stability). We shall apply these to a one-parameter family of bifurcations studied
by Braun (1973) and we shall consider two- and higher-order parameter families. A somewhat
special role is played by the detuning parameter 8(¢) and we shall give this parameter special
attention.

9.1. Existence of local and global bifurcations

Type I: two normal mode solutions.

Putting A(7) = 0 or B(7) = 0 in equations (24) produces two periodic solutions. It is easy to
verify (see § 7) that there are no small denominator problems. From the equations of motion (8) it
is concluded that the approximate solution A(7) = 0 does not correspond with an exact normal
mode in the ¥ = # = 0 plane but with a nearly normal mode periodic solution. The approximate
solution B(7) = 0, however, corresponds with an exact normal mode in the z = z = 0 plane; this
is a consequence of the discrete symmetry of the potential Uy in z. We shall return in more detail
to this exact periodic solution in §9.2 and in a subsequent paper.

Type I1: two periodic solutions if X = 0, 2n and condition (27) is satisfied.

The right-hand side of equation (254) and the condition 0 < 42 < 2E, produce the condition of

existence . 10ay(a, + ay) +9(by — by) +60(e) / (E,€2)
10(a, +a,) (3ay—ay) — 9(by — 2by + by)

<1 (29)

Tt is clear that the detuning parameter 8(¢) plays a role in the existence of type II periodic solu-
tions which becomes increasingly important for smaller values of the energy. We shall return to
condition (27) while studying specific parameter families.

Type III: two periodic solutions if X = m, 3w and condition (27) is satisfied.

The right-hand side of equation (254) and the condition 0 < 4% < 2E, produce the condition

f exist
of existence 14ay(ay — ;) +3(by = 3b5) +63(c)/ (Ey€?) _ | (30)

0< 2(ay —a,) (9ay— 5a,) — 3(8b, — 2b, + 3b3) )

Again the influence of the detuning parameter 8(¢) becomes more important for smaller values of
the energy.

The three types of periodic solutions described here are all local bifurcations with respect to the
energy, i.e. for each arbitrary but fixed value of the energy, we find 2, 4 or 6 periodic solutions.
That we always find at least two bifurcations is in accordance with the existence theorem by
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Weinstein (1973) for Hamiltonian systems. Apart from these local solutions, global bifurcations
with respect to the energy may arise in the following way. We look for solutions with sin X = 0 for
all time while at the same time equation (254) is satisfied for all permissible values of the ampli-
tudes. This induces the following cases:

X =0,2m,
o 60(¢)
while simultaneously 10ay(ay + as) + 9(by — b) +-E——€E =0,
’ (31)
- 10(ay +a,) (3ay—ay) —9(by — 265+ bg) = 0;
X =m, 3,
o 65(¢)
while simultaneously 14a,(a; — ay) + 3(by— 3bg) + =5 = 0,
Eye } (32)
2(a, — a,) (9ay — 5a,) — 8(8by — 20, + 3b5) = 0.

These global bifurcations can be studied by looking at the corresponding form of the integral of
motion (28a) or (285):

(1) X = 0, 21 while equations (31) hold. We find, surprisingly, that the coefficients do not
depend any more on the parameters: & = — 1,y = 0. The integral (285) becomes

I, = A%(7) B2(7) [1—cos X(7)]. (33)

In cartesian variables the integral becomes after some minor rearrangements I = 2(xZ — %z)2 So
in the case of these global bifurcations the second integral reduces to the angular momentum
integral of the linear system. It is easy to deduce from the integral that at the same time two type
I1I local bifurcations exist (we return to this in §9.3).

(2) X = =, 31 while equations (32) hold. Again we find that the coeflicients in the integral of
motion (284, b) do not depend any more on the parameters. We find: o = 1,y = 0. The integral

(285) becomes I, = — A%(7) B2(r) [1 +cos X(r)]. (34)

In cartesian variables the integral becomes after some minor rearrangements Iy = — 2(xz + #2)2%
It is easy to deduce from the integral that at the same time two type II local bifurcations exist
(we return to this in §9.3).
9.2. Exact solutions

Although equations (5) (or (8)) are nonlinear a few exact solutions can be found. These solu-
tions are of particular importance as they can be used to demonstrate the non-uniform dependence
of the existence of periodic solutions on the energy. It turns out that the condition of discrete
symmetry of the potential Uy in z preserves the normal mode in the (#, £) degree of freedom under
nonlinear perturbations.

Putting u = 22, equations (5) become

L oUy, . U
%= - a—(x,z), z———ﬁa-(x,u) 2z.

Substitution of z = Z = 0 yields # = —0U,(x, 0)/0x. (35)

The solutions of equation (35) are periodic in the vicinity of the origin of phase-space and corres-
pond with the type I periodic solutions in the case B(r) = 0. We remark that these solutions exist
for all values of w.

45 Vol. 2g0. A.
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452 F.VERHULST

A more special case is the following. Retain only the quadratic and cubic terms in the potential
(7) (in equation (7) by = by, = by = ... = 0) and choose w = 1. The equations of motion become

i+x=a,x%+ta,2%
242z = 2a,xz.

Inspired by the results on local bifurcations in §9.1 we look for solutions of the form

$() =¥(t) and (1) = Y1) +r.

Substitution in the corresponding phase-amplitude equations (10) with n = 1, §(¢) = 0, ¢ = 1,
by = by = by = ... = 0 produces for the amplitudes the relation

(2ay—a,) 4%(t) = a, B2(2)
and so (2a,—a,) %(t) = ay2%(t). (36)
Equation (36) corresponds with solutions of the equations of motion if
ay(2a,—a,) > 0. (37)

If 2a, — a, = 0 these solutions reduce to the normal mode solutions represented by equation (35);
if @, = 0 the equations of motion are uncoupled. From equation (36) it is clear that if x(¢) is
periodic or unbounded, z(¢) is periodic or unbounded and vice versa. Conditions of periodicity
are obtained easily by considering the Hamiltonian (6) after elimination of z

3a,—a,
2a,

h (%2 4 %2 — £a, 7).
For each value of the energy this equation produces a cubic curve in the x, # plane. This curve
consists of an open branch and a closed curve, corresponding with cycles (periodic solutions)

around the origin if
3(12 - a1

0<h< 248

9.3. Stability

As in §7.2 we shall use the first integrals which we found to study the orbital stability of the
periodic solutions. Here, the type IT and type III local bifurcations correspond with the critical
points of the integral (28a). We use Morse theory to establish their stability. The type I (normal
modes) bifurcations correspond with the boundaries 4 = 0, 4 = (2E,)? in the 4, X phase plane
and have to be studied in a different way.

In the case of the global bifurcations the critical points are degenerate, but as the integral
simplifies rather drastically (cf. equations (33) and (34)) it is easy to see what happens. We find
after some calculations:

Type II periodic solutions, X = 0, 2n: positive quadratic form, i.e. stability if,

(@185 — 6a3 — 3by) [5(a, +a5) (@, — 3ay) +§(by — 2b,+ b3)] > 0. (38)

The solutions are unstable if this expression is negative.
Type III periodic solutions, X = =, 3n: positive quadratic form, i.e. stability, if

(@, ay— 603 —3b,) [2(a, — @) (Bay — 9ay) + 3(3b, — 2by+ 3b3)] < 0. (39)

The solutions are unstable if this expression is positive.
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Remark: the detuning parameter 6(¢) plays a part in determining the existence of the type IT and
type III periodic solutions but zot in the stability of these solutions.

TypelI (normal mode) solutions. To study the stability of these solutions we use the same method
as developed in §7.2. This method involves the equation (25a) for X and the integral (284)
together with the implicit function theorem. The B = 0, 4% = 2E, normal mode is studied by
considering equation (254) in a D, neighbourhood of A2 = 2K, by putting 4% = 2E,— 42,
0 < 4% < 5. Equation (25a) becomes
d(e)

= (a; ay+4a3 — §aj — 3b, + 3b,) 2F, — P 2E,(}a,as—ad —1b,) cos X+ 0(4?).

dx
dr
So we have stability of the normal mode B = 0 if

a;, a3 +3a3 — §ai — b, + §by— 0(¢) / (2, €?)
4010, — a3 — 1y

> 1. (40)

We have instability if this condition is not satisfied. The 4 = 0, B2 = 2E, normal mode is studied
by considering equation (254) in a D, neighbourhood of A2 = 0 by putting 0 < 42 < 7. Equation
(25a) becomes

dX

T = — (@10, —4ad + §by — §by) 2B, — 8(€) /(%) + 2Eq (§ay 8, — a§ — }b) cos X'+ O(42).

So we have stability of the normal mode 4 = 0 if

ay 8y — a3+ 30y — 305+ 8(¢) / (2E, €%)
3@, a,— a3 —1h,

> 1. (41)

We have instability if this condition is not satisfied.

Some insight in the phase-flow in the 4, X plane can be gained by considering the separatrix
with the initial conditions such that /; = 0. Equation (284) produces in this case two orbits, i.e.
A = 0 (a normal mode) and one given by

(A2 —2Ey) cos X +ad2+p = 0. (42)

Whether the orbit corresponding with equation (42) exists or not depends on & and g. If this orbit
intersects with the normal mode 4 = 0 this normal mode cannot be stable. At the intersection we

have —2Eycos X+ = 0.

So we have stability of the normal mode 4 = 0 if | 8/2E,| > 1 and instability if this condition is
not satisfied. This result is equivalent with the condition represented by inequality (41).

The global bifurcations X = 0, 2r (equations (20) hold) and X = &, 3n (equations (21) hold)
are unstable. This result is made explicit by plotting the 42, X phase plane portrait in figure 3
using the integrals (33) and (34) after eliminating 5%(7). At the same time it is clear that X = 0, 21
global bifurcations are accompanied by stable type III local bifurcations and unstable type I
(normal mode) solutions. The X = n, 3n global bifurcations are accompanied by stable type II
local bifurcations and unstable type I solutions.

Both the existence and the stability considerations up till now have been based on the normal
forms (24) of the equations of motion and the corresponding integrals. In obtaining these results
the O(e?®) terms in the equations (the 5th- and higher-order terms in the Hamiltonian and the
potential) have been omitted and we wish to show that our results are essentially unchanged by the

452
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addition of these higher-order perturbations. To accomplish this we have to reduce the system of
differential equations to a Poincaré mapping. This can be done by introducing action-angle
variables or using iso-energetic reduction (Siegel & Moser 1971). In both cases we reduce to a
one-degree-of-freedom Hamiltonian which is non-autonomous. The type IT and type III bifur-
cations are found as critical points of the corresponding vector field. This way of studying the
stability of these solutions has been explored by Braun (1973) for the case b, = b, = b3 = (e) = 0.
He employs Moser’s twist theorem to prove the existence of infinitely many invariant tori with
non-zero measure on each energy surface which implies the stability. Braun’s proof carries over
without serious complications to our more general case. However, the critical points of the
mapping have to be non-degenerate which leaves out the global bifurcations which we found.

freeee : —

— ; —
\\\ -

O] (((¢

i
|
| —
|
]

—)

0 - I -4 2n

Ficure 3. The 42, X phase plane near the main resonance n = 1 with global bifurcations at X = x, 3n. The orbital
curves are obtained from equations (34) and (26) with E, = 1%. Critical points corresponding with stable
periodic solutions are found at A2 = E,, X = 0, 2n. Each point of the line X = © (or 37) corresponds with a
periodic solution. The analysis of existence and stability is given in §§9.1 and 9.3. The phase-flow near the
X = 0, 2x global bifurcations is obtained by translation of the X-axis by a factor =.

9.4. Braun’s one-parameter family of bifurcations; detuning

Braun (1973) studied the phaseflow, corresponding with equations (5), (7), where w = 1,
by = by = by = ... = 0. We assume g, # 0 to avoid uncoupling of the equations. We shall show
that Braun’s results are contained in ours, moreover it will become clear that this discussion of the
normal modes and the global bifurcations is not complete. The results are obtained by studying
a one-parameter family of bifurcations; we extend these results to a two-parameter family by
admitting detuning. The bifurcation parameter introduced by Braun is A = a,/3a,. The para-
meters & and £ (§8.2) become

15A2—-12A—1 18A—1
= —5o=g > F=30-9)P
Condition (27) is violated if A = 2. As will become clear in a subsequent paper, we have in this
case a higher-order resonance of an uninteresting type: the only bifurcations are the two normal
mode periodic solutions. We assume here A # 2. The analysis of existence and stability of local
bifurcations given in §§9.1 and 9.3 is summarized in figure 4.

Remarks

(1) The global bifurcation at A = —} occurs as a degeneration of type II local bifurcations in
the transition from unstable to stable solutions. At A = } the global bifurcation is prompted as an
isolated event. The A = —1 global bifurcation occurs in Braun’s list, the A = % bifurcation does
not.
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(2) As has been pointed out in §9.1 we find at least two bifurcations for each value of A (in
accordance with the Weinstein (1973) theorem). In Braun’s list the 5 = 0 normal mode is
missing for A > 2. Using a different method, Kummer (1976) reached the same conclusion. It
should be remarked here that this normal mode can even be recognized as an exact solution.
Equation (35) becomes in this case & + x = a, 1%, producing periodic solutionsif 0 < # < 1/(642).

(3) The type II bifurcations have been given as exact periodic solutions in §9.2. The condition
of existence (37) again leads to the condition A < £.

1 ype I S X o y o
B=0 | |
I |
Uk o SN »
X=0,21 : | :
! |
11T ! |
~ =0 |
X==1,9m ‘l \ T :
| | |
i |
_ I —— i X 1} X % o | o
=0 —5 T 3 2 A

F1cure 4. The existence of bifurcations (periodic solutions) for each value of the (small) energy at the main resonance
n = 1 for Braun’s one-parameter family; A = a,/(3ay), as # 0, 6(€) = by = b, = by = 0 in the potential (7). A
full horizontal line denotes existence of the bifurcations, a full vertical line denotes where the type I1 or type 111
bifurcations branch off the normal mode B = 0. Stability is indicated by O, instability by x . A large dot at
A = —}, } denotes the existence of a global bifurcation. The figure is based on the analysis in §9.4.

(4) Some insight can be gained by looking at the normal modes as permanent phenomena and
at the type IT and III bifurcations as solutions branching off the normal modes. The following
picture arises: For A > £ only 2 normal modes exist; at A = % the type IT bifurcation branches off
the B = 0 normal mode (equation (36) or (29)); for A— —co the type II bifurcation tends to-
wards the 4 = 0 normal mode. A similar behaviour is found for the type III bifurcation from
equation (30); for A =  the bifurcation branches off the 5 = 0 normal mode and for A+ — oo
it tends towards the 4 = 0 normal mode.

(5) In the a,, a, parameter space the topology of the phase-flow induced by the corresponding
Hamiltonian changes drastically on crossing the straight lines a, = 0, @, +a, = 0, @, — 2a, = 0,
a,—ay =0, a;,—2a, = 0.

We now look at the effect of detuning on Braun’s family of bifurcations. Consider the three
parameters a;, a,, 0(¢). We assume again @, # 0 to avoid uncoupling of the equations; this enables
us to consider the effect of detuning in a two-parameter family of bifurcations. We put

d = d(e)/(a§ £y e®);
the existence condition (29) for type II bifurcations becomes

3A+1+4+3d

O<3man N

< 1.
The non-degeneracy condition (27) implies A # 2. The X = 0, 2x global bifurcations are ob-
tained from equations (31) and are found at A = —%,d = 0and A = 1, d = —22. The domain of

existence of the type II bifurcations is sketched in figure 5 (a). The stability is concluded from
equation (38).


http://rsta.royalsocietypublishing.org/

\

y

V4

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

\

A

A

[

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

456 F.VERHULST

The dependence of the parameter  on both the detuning parameter §(¢) and the energy E,
causes another phenomenon. For example choose A = 0; from figure 5 (¢) we know that type II
bifurcations exist if —§ < d < 42. This inequality implies that if §(¢) > 0 we have

E, > 30(c)/(10a%€?); ifd(e) <0 wehave E,> —30(¢)/(5ake?).

This means that in the detuned case, starting with energy E, very small, no type IT bifurcations
exist. Increasing the energy produces these bifurcations at a specific value of the energy.

S8
jSH

—

[\

>
Do

=
—
=
)
< \ T 3
i
R ETEET!

T /U/U{JV

—
!

W

—

\ |

blow up of d=0
A==} neighbourhood

-2+ (e

.._3 -
Fioure 5. The existence domain of bifurcations in a two-parameter family obtained by detuning Braun’s 1-para-~
meter family; A = a,/3a,, d = 0(¢) /(a3 Ey€?). (a) refers to type II bifurcations; () to type III bifurcations.
Each point in a vertically shaded area denotes the existence of two unstable bifurcations, each point in a hori-
zontally shaded area denotes two stable ones. There are four global bifurcations: typeIl at A = —},d = 0 and
A=1,d= —*;typelllatA = 4,d = 0and A = §,d = —3%. Putting d = 0, one recovers the type IT and type
III existence lines in figure 4. The analysis is based upon the results of §9.4. (¢) the blown-up neighbourhood

of the two global bifurcations in figure 5 ().

Similar results are obtained in studying the type III bifurcations. The condition of existence
(30) becomes 7(3A—1) +3d
3(8A—1) (3—5A)

0< < 1.
The non-degeneracy condition (27) implies again A # 2. The X = n, 3n global bifurcations are
obtained from equations (32) and are found at A = §,d = 0and A = %, d = —28. The domain of
existence of the type III bifurcations is sketched in figure 5(5). The stability is concluded from
equation (39).
9.5. Parameter families of bifurcations

To understand the role of each of the parameters a,, a,, by, by, b5 and §(€) one has to study all the

possible parameter families. We shall indicate families by degenerate if condition (27) is violated,

ie. if by = 2ay(a; — 6a,). (43)
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We remark that uncoupling of the equations of motion (8) to order €* by taking @, = b, = 0
constitutes a special case of degeneracy according to equation (43). In our terminology the a,, a,
parameters will generate two degenerate cases @, = 0, a; = 64, (A = 2) and a one-parameter
family of bifurcations (Braun’s parameter family). In the same way the a,, a,, 8(¢) parameters
will generate two degenerate cases @, = 0, ¢, = 6a, and a two-parameter family of bifurcations
(figure 5). The ay, by, 0(¢) parameters generate the degenerate case b, + 44 = 0, for a, # 0 a two-
parameter family of bifurcations, and for @, = 0 a one-parameter family, etc. In the following
table we indicate the number of possible parameter families for the six parameters; because of the
special role of detuning we indicate in each case the number of parameter families involving
d8(e). To give an impression of the part played by degeneracy we give the number of uncoupled
degenerate families (g, = b, = 0).

number in parameter families
A

1 2 3 4 5
number of families 15 20 15 6 1
detuned families 5 10 10 5 1
uncoupled degenerate families 6 4 1 0 0

o ol

—

0

F1cure 6. The 42, X phase plane at the main resonance n = 1 (§(¢) = 0) in the case of Braun’s one-parameter family
where A = —}. The orbital curves are obtained from equation (284) with Ey = %, = —%, 8 = 4. The normal
modes 4% = } and 42 = 0 are stable periodic solutions. The critical points at X = 7, 3z (the last one is omitted)
correspond with two stable periodic solutions, the critical points at X = 0, 2n correspond with two unstable
periodic solutions. The analysis of existence and stability is given in §§9.1, 9.3 and 9.4.

The one-parameter families of type II and type III bifurcations will be empty (degenerate
families), or will consist of semi-infinite sets in R (e.g. Braun’s parameter family, figure 4) or will
consist of compact setsin R (fix, for instance, a; = A = 0in figure 5). Itis seen from equations (29)
and (30) that the 16 non-degenerate two-parameter families in R? are bounded by straight lines
and conic sections. We have seen an example of such a family by detuning Braun’s parameter
family (figure 5). Another example is the family produced by the parameters a,, a, and b,. If
a,a, = 0 the two-parameter families are bounded by straight lines. The global bifurcations
X =0, 2n and X = m, 3n are found by solving two quadratic equations in each case (equations
(31-32)). This means that among the one-and two-parameter families the global bifurcations are
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458 F.VERHULST

represented by 0, 1 or 2isolated pointsin R or R?respectively. On adding parameters, the dimen-
sion of the global bifurcations set grows. For instance, it can be seen that the three-parameter
family induced by @y, a,, b; and &(¢) in R3 contains a global bifurcation set consisting of the inter-
section of a plane and a parabolic cylinder in R3. It is finally concluded that the three-, four- and
five-parameter families in R?, R* and R respectively, consist of semi-infinite and compact sets
which are connected by global bifurcation sets which have the dimension 1, 2 and 3 respectively.

The consequences of these considerations in the perspective of structural stability will be
summarized in §12. In Braun’s (1973) paper the phase-flow is illustrated for different values of
A; for reasons of comparison and to make the part played by the amplitudes more explicit we
present the phase-flow in the 42, X phase plane. Our figure 3 for the global bifurcations corres-
ponds with Braun’s figures 4 and 7; in our figure 6 we present the case A = —} corresponding
with Braun’s figure 3.

10. THE BEHAVIOUR OF THE ORBITS WITH TIME IN THE CASE n =1

The results of the preceding sections can be used to determine the behaviour of the orbits with
time to an O(¢) approximation on the time-scale 1/¢2. We summarize the results for the periodic
orbits.

Type I (normal modes):

Bex) =0, Ae%) = (2E,)},
B(e?t) = go— (§ad+3b,) Eye?t;
_ (44)
A(e2t) =0, B(e) = (2E,)},
. P (62) = Yro— (§a3 +30s) Eoe?t +§8(e) ¢.
TypeIl: X = 0, 2x:
A2(e2 [1042(“1"'“2) + 9([72”*[73)] Ey+65(e) /¢
() = 215 0, + a3 (3a3—ay) = (b~ 26, +bs)
Bo(ety) — 91001+ @) (2a,—ay) —9(b;, —by)] £y — 69(e) /¢
BHe®t) = 10(a1+a2) (Bay—a,) —90b,~ 2oy ¥ by) (45)
G (%) = g~ (15“1 3b) A% — (50, a5+ §ai + §by) B,
J(e?) = Pe?) —

Type I11: X = m, 3n:
9 [14ay(a, —ay) + 3(by—3b3)] Ey+ 65(¢) /¢?

Aer) = 2(ay — ay) (9ay — 5ay) — 3(3by — 2by+ 3by)°
Fol o [2(a1~a ) (2a5— 5ay) — 3(3by — by)] Ey— 60(€) /€2
Be) 2(ay —ay) (9ay— bay) — 3(3by — 2, + 3by) ’ (46)

Blett) = o (Fpad+ b0) A% — (Fgay g el + 1) Bt
o) = fle) - 1K,

In the expressions for ¢ (%) the appropriate values of 42 and B2 have to be substituted.
Expressions for the behaviour of the non-periodic orbits with time are cumbersome and will be
omitted here except for the case of the global bifurcations.
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X = 0, 2r (equations (31) hold). Eliminating B and X from equation (24 4) with the aid of the
integrals (26) and (83) and integration yields

A2(c%) = E§ + (B3~ 3I)sin ((§ay 05— 0§ — 1by) (2L)2e?t + C). (47)

The constant C is determined by the initial conditions. For B%(e2) we get the same expression
with # replaced by ¥ . Expressions for ¢(¢%) and 1/ (¢%) can now be obtained by direct integra-
tion of equations (244) and (24d). We omit these expressions here; for details in the case of the
Hénon—Heiles problem see Verhulst (1977).

X = n, 3n (equations (32) hold): Just replace I, by — I, in the expressions for the global bifur-
cations X = 0, 27.

An interesting feature is displayed by these results, which is presumably characteristic for the
flow near the global bifurcations. Consider again the 42, X phase plane in figure 3. The orbital
curves are parametrized by the values of the integral I,. At the centre points 42 = E,, X = =, 3n
and 4% = E,, X = 0, 2n the extremal values 2E3 and — 2E2 are respectively attained. As we move
outward the value of I; decreases/increases monotonically until it reaches the value zero on the
location of global bifurcation X = 0/=, 3n. This means that (cf. equation (47)) the periods of the
orbits become arbitrarily long on approaching the global bifurcations. To put it differently, if
I; = O(e), the time-scale of validity of the approximations 1/¢? is not long enough to describe the
characteristics of the flow near the global bifurcations. This is another indication (cf. §9.8) that
we need higher-order approximations to describe this phenomenon more adequately.

11, THE RESONANCE CASES 7 = 2 AND 2 = 3

The main resonances left over to be treated are the cases with resonance parameter w near 2 and
3. In accordance with §5 we assume again ¢(¢) = O(e?). Introduction of the modified Birkhoff
transformation (12) into equations (10) and averaging produces after lengthy calculations
equations for the first asymptotic approximations of the amplitudes and phases (7 = €%)

4 dB
T =00, G =00, (484,0)
9 () A (2a1a2+4 a5 +lb)E2+0(e), (480)
dyr aa a3 b, 8n%—3 n&(e)
ar ( ;n2+ (4n22—— 17+Zﬁ) 42— (4n(4n2—— 1) _b3) Bryg=—5"+0(e) (484d)

in which n = 2 or 3. Itis surprising that in contrast with the main resonancesatn = Jorn = 1 the
resonances z# = 2 and n = 3 exhibit for all values of the parameters 4y, ..., b,,6(¢) degenerate
behaviour, i.e. the amplitudes A(¢t) and B(t) are approximated by their initial values within
error O(€) on the time scale 1/¢* (§5). To give a complete description of the phase-flow we need
approximations on a longer time-scale than 1/€% Again, this subject falls within the scope of
higher-order resonances and will be treated in a subsequent paper. At this stage we can calculate
the variation with time of (e2) and 1 (e%) by replacing 4 and B in equations (48¢,d) by 4(0)
and B(0) and integrating. The resulting # and 2 constitute approximations of x(¢) and z(¢) with
error O(e) on the time scale 1/¢2. Furthermore, it is evident thatifn = 2orn = 8

(a¢) Two independent approximate integrals exist which correspond to the respective energies

46 Vol. 2g0. A.
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460 F. VERHULST

in each of the two degrees of freedom. No exchange of energy between the two degrees of freedom
takes place on the time scale 1/¢2.

(b) The two normal modes (periodic) solutions 4 = 0 (z,Z degree of freedom) and B = 0
(x, % degree of freedom) do both exist. It is easy to verify that this case presents no small denomi-
nator problems (cf. §7).

The degenerate behaviour at the main resonances n = 2, 3 is a consequence of the assumption
of discrete symmetry in z of the potential (7) (or Hamiltonian (6)). In modelling actual physical
situations one would consider the stability of such discrete symmetric systems by admitting small
deviations from symmetry. In the example of a rotating galaxy discrete symmetry of the potential
implies a mass distribution symmetric with respect to the galactic plane. A small deviation from
discrete symmetry could be forced by a slightly asymmetric density distribution with regard to the
galactic plane or by the attraction of a neighbouring galaxy. We consider the effect of such
deviations by adding to the potential Us(x, z2), given by equation (7), the asymmetric part

Ugo = — (agx%z+%a, 2%) — (by 832 + by x23). (49)

The equations of motion (8) become after rescaling

¥+x = €(a,x2+ay 2%+ 2a5x2) + €%(by ¥% + by x2% + 3b, x%2 + by 2%) + O(€?), 50
Z4w?z = €(2a9%2 + agx2 + ay 2%) + €2 (by 522 + bg 23 + by x% 4 b5 x2%) 4 O (€?). } (50)
We repeat the procedure of §§4 and 5 with » = 2 and 3, without giving all the details.
n=2.
The averaged equations for the approximate amplitudes and phases become
d4 a3~.~df§_a32.~
T = _EABsz’ T = §J sin X,
a3 F_2e) e o
P _ % v =08 Bl X
Ir Bcos X, | . 3 ~ C0S X,

in which 7 = ef, X = 2¢ —t/; we have omitted the O(e?) terms. Analysis of equations (51) gives
the same type of results as obtained in the case n = 4 (§§6 and 7). Again an integral independent
of the energy exists which causes various local bifurcation phenomena. One could look at the case
in which the asymmetric part ¢, is of smaller order than the symmetric part, for instance by
putting in (49) ag = eay, a, = €y, etc., where the constants a, a,, ... are independent of €. In this
case one finds similar phenomena as displayed by equations (51) (we have to put 7 = €2t and some
terms have to be added in the averaged equations). This is a consequence of the fact that first-
order averaging in the case n = 2 yields complete degeneracy, i.e. if §(¢) = O(e?) all O(e) terms
are zero in the equations for the approximate amplitudes and phases.

n = 3.

We will not give a complete discussion of the phenomena associated with equations (50); it
suffices here to consider the case a3 = a, = 0. The averaged equations for the approximate
amplitudes and phases become after applying modified Birkhoff transformation (7 = €%,

X =3¢-y): d4 Te B P dB by . o
E—:—3b4AzBs1nX+0(e), a;:ﬁﬁ3s1nX+O(e). (52a,b)

The equations for d¢/dr and dif/dr are obtained by adding to equations (48¢,d) for the case
n = 3 the terms — 35, AB cos X and —g4b,(A3/B) cos X respectively.
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The analysis of these equations for the case # = 3 runs along the same lines as the analysis for the
casen = 1 (§§8-10). An integral independent of the energy exists which causes a number of local
bifurcation phenomena. If one looks at the case in which the asymmetric part U, is of smaller
order than the symmetric part (putting a; = €dy, ..., by = €bs where the constants a,, ..., b; are
independent of €) equations (484, d) remain unchanged in the case » = 3 and again the two inde-
pendent approximate integrals correspond with the respective energies in each of the two degrees
of freedom.

12. THE CATASTROPHE SET AT THE MAIN RESONANCES; STRUCTURAL STABILITY

Let U be an open subset of R* and 0 € U. We will consider functions (Hamiltonians) of the form

(6) but we drop the assumption of analyticity. Consider instead the set J*(U, R) (functions with
partial derivatives up to order k) of C* functions of the form (6). The 4-jet of such functions is
given by (6) and (7). We call this function space HF (U, R); two elements of this space will be
called é-close if their £ partial derivatives with respect to U are d-close in the sup-norm. To include
perturbations which are not discrete symmetric with respect to z, we define a related function
space as follows. Consider the Hamiltonian functions with non-degenerate critical point 0 € R* of
the form b= 342 +22) + Uy(x, 2).
Again we restrict to Ae J¥(U, R) n C*(U, R). We call this space H*(U, R) and we shall apply to
it the same metric. Clearly H*(U,R) < H*(U, R). We consider these function spaces at each of
the main resonances and we associate them with parameter spaces P™ which are isomorphic with
R™; the parameters are generated by the A-jet of Us(x, %) in (7) or for H*(U, R) by (7) and (49).
For instance, at the main resonance n = 1, k = 4, m = 6. In §§7.1 and 9.1 we found open sets
E < P™ corresponding with potentials Us(x, z%) for which type II or type III bifurcations exist.
The boundary set O£ includes in §9.1 the global bifurcations with respect to the energy. The map
0E - HF(U, R) produces the catastrophe set Cy in H¥(U, R). In §§7.2 and 9.3 we found open sets
S < Pm corresponding to potentials Us(x, z%) for which the type I, IT and III bifurcations are
stable or unstable. The map 08— H¥(U, R) produces the catastrophe set Cy in H¥(U, R). Finally
we found in §§6.1 and 8.2 conditions of degeneracy which takes place at a set D < P™, The map
D> H(U,R) produces the catastrophe set Cp, in HF¥(U, R).

Remark. In catastrophe theory the standard terminology would be to call the set O£ U 0S'U
D < P™ the catastrophe set and the set induced by the mapping of the catastrophe set into
HF(U,R) the bifurcation set. We refrain from adopting this terminology to avoid introducing a
concept of bifurcation with yet another meaning. If a Hamiltonian #e Hf(U, R) is not contained
in the catastrophe set Cy; U Cg U Cp we call this Hamiltonian (and the corresponding potential)
structurally stable in HF(U, R). An analogous definition of structural stability applies to Hamil-
tonians in H*(U, R).

We summarize the results relevant to structural stability by defining the sets 0£, 05 and D in
Pm for each of the main resonances. As explained earlier the results depend on the energy E,.

n =%k = 8,m = 3;parametersa,, a5, &(€) (= O(¢))

reference
set section
D a =0 6.1
oL 8(€) = — y2a,6E, 7.1
0(€) = 44/2ay€E,
oS oS = 0F 7.2

46-2
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n=1:k = 4,m = 6, parameters a,, as, by, by, b, (€) (= O(€?))
reference
set section
D by = %a,(a; — 6a,) 8.2
O 10ay(a; +a,) + 9(by— by) + 65(€) /(Ey €*) 0 and 1 9.1

10(a;+ay) (3ay—a;) —9(b;— 2by+ b3)
14a,(a, — a,) + 3(by— 3b5) + 69 (€) / (Eo €%) _
2(a; — ay) (9a;— Bay) — 3(3b, — 2b,+ 3b;)
oS by = %a,(a, — 6a,) 9.3
10(ay +ay) (a3 — 3a,) +9(by — 265+ b3) = 0
restricted to E < P8,
2(ay— a,) (bay — 9ay) + 3(3b, — 2b,+ 3b3) = 0
restricted to E < PS8,
2(4a3 4 6a, a,— 5a) — 3(8b; — 2b,) — 63(c) / (Ege®)| _ 1
2a,(a; — 6a,) — 3b, -
2a,(6a, — ay) + 3(2b,— 3by) + 65(€)/ (E,€?)
2a,(ay— 6a,) — 3b,

0 and 1

=1

= 2and 3

To study the structural stability in H¥(U, R) we need results on higher-order resonances which will
be given in a subsequent paper. It is however clear from § 12 that the potential (6) is structurally
unstable in H*(U, R) at resonances n = 2 and 3.

13. APPLICATIONS AND CONGLUSIONS
18.1. Model galaxies

In constructing models for axi-symmetric rotating galaxies which are symmetric with respect
to the galactic plane, structurally stable potentials at the main resonancesz = yandz = 1 can be
obtained (§12). One must choose the potentials outside the indicated catastrophe set. The terms
in the Taylor expansion of the potential up to (and including) degree 3 in the case of n = } and
up to degree 4 in the case of n = 1 determine the structural stability completely. The situation is
different at the main resonancesz = 2 and n = 3, where we have degeneration of the resonances
(§11). Axi-symmetric rotating galaxies are not structurally stable at these resonances if deviations
from symmetry with respect to the galactic plane are admitted.

13.2. The “third integral of the galaxy’

A third integral of the galaxy (isolating and independentof the energy and angular momentum)
for axi-symmetric rotating galaxies which are symmetric with respect to the galactic plane exists
in an asymptotic sense at and in the neighbourhood of the main resonances n = $ and n = 1ifthe
potential is chosen outside the catastrophe set Cj,. The asymptotic is not only formal but based on
rigorously established estimates (§§6.2 and 8.2). In the neighbourhood of the resonances 7 = 2
and 7 = 3 we have angular momentum as an exact integral and two independent approximate
integrals corresponding with the respective energies in each of the two degrees of freedom (§11).
If we admit model galaxies with deviations from symmetry with respect to the galactic plane we
have three integrals, angular momentum, energy and an approximate integral producing
exchange of energy between the two degrees of freedom.
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13.3. Density waves

The local bifurcations found in §§7.1 and 9.1 correspond with continuous sets of periodic solu-
tions if we do not keep the energy constant. It can be shown that these sets of periodic solutions
correspond with axi-symmetric density waves by calculating the density response from the
Poisson equation (2). These calculations are easy to perform and the details have been left to the
reader.

13.4. Classical examples of potentials

In theliterature a number of axially symmetric potentials with isolating integrals can be found
and we shall show how some of them fit into our classification. We shall refer to table I given by
Lynden-Bell (1962); we use the notation employed there except that we put R? = r2+ 22 (ris the
coordinate used in a cylindrical frame of reference). Except where explicitly stated otherwise,
structural stability is considered in H* (U, R).

(1) ¥ =[L(A) —n(w)]/(A—p) and the approximation called Eddington’s potential: § and ¢
can be chosen so that the potential is structurally stable at z = } and n = 1. Model galaxies with
such a potential, which can be expanded in the form (7), should only be used near n = 2 and
n = 3if {(A) and 5(x) have been chosen so that the energy in each of the two degrees of freedom
separately is conserved.

(ii) ¥ = &(r,z): this is the general potential studied in this paper.

(iii) ¢ = &(R): the spherically symmetric potential is for each choice of ¢ (sufficiently smooth)
structurally unstable at # = 1 and n = }. The structural instability in H*(U, R) at n = 2 and 3
suggests that we have to avoid choices of {(R) which can be locally approximated by AR-#
(n = 2) or AR™%" (n = 3).

(iv) ¢ = &(R) +R2y(0); we have the same conclusions as in i.

(v) ¢ = &(r) +9(z); structurally unstable.

(vi) ¢ = AR, structurally unstable (w0 = n = 1).

(vii) ¢ = Ar~'+{(z); structurally unstable.

(viii) ¢ = Ar?+{(z); structurally unstable.

(ix) ¢ = —A(PPr?+n%2?); structurally unstable.
(x) ¢ = —AR?; structurally unstable (0 = n = §).

18.5. The Hénon—Heiles problem

In the problem discussed by Hénon & Heiles (1964) we havern = 1,0(¢) = 0,4, = 1,2, = —1;
by, by, by and all other coefficients in the expansion for the potential (7) are zero. An extensive
discussion of this problem is given by Verhulst (1977). We summarize here the additional infor-
mation obtained from §9. The Hénon-Heiles problem provides an example of a potential des-
cribed by Braun’s one-parameter family of bifurcations (§9.4). Clearly A = —4. The potential is
structurally unstable asat A = --} we find a global bifurcation; moreover, the two normal modes
and the type II bifucations change their stability characteristics at this point. The periodic
solutions are:

(I) Normal mode solutions
Approximate solution at x = # = 0:

2 = (2Ey)} cos (o +t— §Ey€%),
> = — (2E,)¥sin (Yo +t— SE, €%).

™
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Approximate solution at z = Z = 0:
% = (2E,)tcos (Pg+t — 5 E, €%),

%= —(2Ey)¥sin (¢y+1t—LE,€2).

Exact solution at z = Z = 0 described by
I+ 32— a8 = h.
(IT) Two exact solutions at X = 0, 2x given by
I+ 3424+ 2x3 = th and 2% = 3x2

Two global bifurcations at X = 0, 2x.
(III) Two periodic solutions at X = =, 8w given by the approximations (p = n/2 or 31/2)

= Efcos (po+t+3Eye2), 2= Egfcos(py—p+t+iE,e2t),

= —Egsin(Po+t+3E,6%), 2= —Epsin(¢,—p+t+1E,e2).
Hénon and Heiles constructed a surface of section in the x, % plane (z = 0,2 > 0). The boundary
of this surface of section is given by the exact normal mode at z = 2 = 0. Fixed points are found

from the approximate normal mode at x = # = 0, the two type II and the two type III periodic
solutions. We find

type Il type ITI
(exact) (approximately)
x=0 x= +4h
x = id(h/z) x=0.

We conclude with two remarks

(1) The fixed points associated with the type IT and type III solutions can be recognized in the
pictures given by Hénon and Heiles for 2 = 0.08333 and 2 = 0.12500. The fixed points associated
with the exact type I1 solutions exist up to the critical energy ~ = §. At this point the energy mani-
fold bifurcates and the solutions associated with type II bifurcations for 2 < } escape to infinity for
h> .

(2) Ing§9.3 weremarked that our discussion of the global bifurcations is not complete as in this
discussion of existence and stability the global bifurcations with respect to the energy correspond
with critical points which are degenerate in the sense of Morse theory. In this context it is inter-
esting to note that the type IT exact solutions (which are found at the locations X = 0, 2n of the
global bifurcations) are stable in Hénon and Heiles’ numerical study. The higher-order normal
forms clearly stabilize the solutions in this case.

(f) A remark on Contopoulos’ third integral

An expansion for the ‘third integral of the galaxy’ has been given by Contopoulos (1967) for
the potential (7) with @, = b, = b, = by = 0; no proof of convergence or asymptotic character of
Contopoulos’ results is known but there is good agreement with a number of numerical results.
One can show that our approximate first integral (284) is equivalent to Contopoulos’ integral
found by Contopoulos & Moutsoulas (1966) at z = 1 to a certain order of expansion. This proves
the asymptotic validity of Contopoulos’ integral for that case. A more complete comparison of
Contopoulos’ analytical results and ours should wait until we have discussed the higher order
resonances in a subsequent paper.
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